In this section, discussed about Order of Preference Output Display Format in MATLAB

**Subscribe to Thesis123 YouTube Channel for Free and Latest Videos**

## Order of preference

1. Parenthesis-(),{},[]-In nested arithmetic operations, the innermost one of the parenthesis is executed

2. Exponentiation-(^)

3. Multiplication (*) or division (/, \) (equal precedence)

4. Addition (+) or Subtraction (-)

**Note:**

In an expression higher precedence operations are executed before the lower precedence.

If the expression having more equal operations, the expressions are executed from the left to right.

>> 5+6/2

ans = 8

>> (5+6)/2

ans = 5.5000

>> 2+4/2+5

ans = 9

>> 2^3/2

ans = 4

>> 27^(1/3)+32^0.2

ans = 5

>> 27^1/3+32^0.2

ans = 11

**YOUR TURN**

Calculate the value of 0.7854-(0.7854)^3/(1*2*3)+0.785^5/(1*2*3*4*5) …-0.785^7/(1*2*3*4*5*6*7)

>> 0.7854-(0.7854)^3/(1*2*3)+0.785^5/(1*2*3*4*5) …-0.785^7/(1*2*3*4*5*6*7)ans = 0.7071

## Basic Arithmetic Operations PART-B

## Output display format/ Representation of Numbers

We can control the output display in command window or in printing file by using the command *format. *Different types of formats are available in the MATLAB and are given in Table

Floating-point numbers may be entered as either integer, decimal floating-point numbers, or using the or using the e notation:

>> 3

ans = 3

>> 3253235.23

ans = 3.2532e+06

>> 32.2523e-3

ans = 0.0323

*Note that the input does not necessarily reflect on the way the number is displayed.*

If the largest number in a matrix would be written using the e notation, the appropriate multiple of 10 is taken outside of matrix:

>> [225323.23 523.23]

ans = 1.0e+05 * 2.2542 0.0052

>> [3.2376 9.2534e-7]

ans = 3.2376 0.0000

>> [728, 725324547]

ans = 1.0e+10 * 0.0000 7.2532

There are a number of formats as shown in Table in which you can use to display the results. You may invoke any of the formats by typing format ****, where **** is the format.

Note: that there are no parentheses.

Table (3)

Name |
Description |
Comments and examples |

short |
Scaled fixed point format with 5 digits. | DefaultScaled fixed point format, with 4 digits after the decimal point. For example, 3.1416. |

long |
Scaled fixed point format with 15 digits. | full precision in decimal formatScaled fixed point format with 14 to 15 digits after the decimal point for double; and 7 digits after the decimal point for single. For example, 3.141592653589793. |

short e |
Floating point format with 5 digits. | Floating point format, with 4 digits after the decimal point. For example, 3.1416e+000. |

long e |
Floating point format with 15 digits. | Floating point format, with 14 to 15 digits after the decimal point for double; and 7 digits after the decimal point for single. For example, 3.141592653589793e+000. |

short g |
Best of fixed or floating point format with 5 digits. | Best of fixed or floating point, with 4 digits after the decimal point. For example, 3.1416. |

short eng |
Engineering format that has 4 digits after the decimal point, and a power that is a multiple of three. For example, 3.1416e+000. | |

long eng |
Engineering format that has exactly 16 significant digits and a power that is a multiple of three. For example, 3.14159265358979e+000. | |

compact |
Suppresses excess line feeds to show more output in a single screen. Contrast with loose. | theta = pi/2 theta = 1.5708 |

loose |
Adds linefeeds to make output more readable. Contrast with compact. | theta = pi/2 theta = 1.5708 |

hex |
Hexadecimal fomrat. | Hexadecimal (hexadecimal representation of a binary double-precision number).For example, 400921fb54442d18 |

+ |
The symbols +, – and blank are printed for positive, negative, and zero elements. Imaginary parts are ignored. | For >>x=[1 -2 5] >>x= +-+ |

bank |
Fixed formats for rupees and pise | For example, 3.14 |

rat |
Approximation by ratio of small integers. | For example, 355/113 |

** Example**

X=[4/3 1.2345e-6 pi]

**>> format short**

X =

1.3333 0.0000 3.1416

**>> format long**

X =

1.33333333333333 0.00000123450000 3.14159265358979

**>> format short e**

X =

1.3333e+000 1.2345e-006 3.1416e+000

**>> format long e**

X =

Columns 1 through 2

1.333333333333333e+000 1.234500000000000e-006

Column 3

3.141592653589793e+000

**>> format short g**

>> X

X =

1.3333 1.2345e-006 3.1416

>> format long g

>> X

X =

Columns 1 through 2

1.33333333333333 1.2345e-006

Column 3

3.14159265358979

**>> format rat**

>> X

X =

4/3 1/810045 355/113

>> format bank

>> X

X =

1.33 0.00 3.14

**>> format compact**

>> X

X =

1.3333 0.0000 3.1416

**>> format loose**

>> X

X =

1.3333 0.0000 3.1416

>> format +

>> X

X =

+++

**>> format hex**

>> X

X =

3ff5555555555555 3eb4b6231abfd271 400921fb54442d18

**Subscribe to Thesis123 YouTube Channel for Free and Latest Videos**