Home » All » Compiler Design

Compiler Design

Compiler Design

Compiler Design

Introduction to Compiler Design presents techniques for making realistic, though non-optimizing compilers for simple programming languages using methods that are close to those used in "real" compilers, albeit slightly simplified in places for presentation purposes.  All phases required for translating a high-level language to machine language is covered, including lexing, parsing, intermediate-code generation, machine-code generation and register allocation.  Interpretation is covered briefly.

Aiming to be neutral with respect to implementation languages, algorithms are presented in pseudo-code rather than in any specific programming language, and suggestions for implementation in several different language flavors are in many cases given.  The techniques are illustrated with examples and exercises.

 

SyllabusVideosClass NotesReference Text Books

Lexical analysis, Parsing, Syntax directed translation, Runtime environments, Intermediate and target code generation, Basics of code optimization.

 

 Speech recognition technology is used more and more for telephone applications like travel booking and information, financial account information, customer service call routing, and directory assistance. Using constrained grammar recognition, such applications can achieve remarkably high accuracy. Research and development in speech recognition technology has continued to grow as the cost for implementing such voice-activated systems has dropped and the usefulness and efficacy of these systems has improved. For example, recognition systems optimized for telephone applications can often supply information about the confidence of a particular recognition, and if the confidence is low, it can trigger the application to prompt callers to confirm or repeat their request. Furthermore, speech recognition has enabled the automation of certain applications that are not automatable using push-button interactive voice response (IVR) systems, like directory assistance and systems that allow callers to "dial" by speaking names listed in an electronic phone book.

Speaker identity is correlated with the physiological and behavioral characteristics of the speaker. These characteristics exist both in the spectral envelope (vocal tract characteristics) and in the supra-segmental features (voice source characteristics and dynamic features spanning several segments). The most common short-term spectral measurements currently used are Linear Predictive Coding (LPC)-derived cepstral coefficients and their regression coefficients. A spectral envelope reconstructed from a truncated set of cepstral coefficients is much smoother than one reconstructed from LPC coefficients.

Speech recognition technology is used more and more for telephone applications like travel booking and information, financial account information, customer service call routing, and directory assistance. Using constrained grammar recognition, such applications can achieve remarkably high accuracy. Research and development in speech recognition technology has continued to grow as the cost for implementing such voice-activated systems has dropped and the usefulness and efficacy of these systems has improved. For example, recognition systems optimized for telephone applications can often supply information about the confidence of a particular recognition, and if the confidence is low, it can trigger the application to prompt callers to confirm or repeat their request. Furthermore, speech recognition has enabled the automation of certain applications that are not automatable using push-button interactive voice response (IVR) systems, like directory assistance and systems that allow callers to "dial" by speaking names listed in an electronic phone book.

Speaker identity is correlated with the physiological and behavioral characteristics of the speaker. These characteristics exist both in the spectral envelope (vocal tract characteristics) and in the supra-segmental features (voice source characteristics and dynamic features spanning several segments). The most common short-term spectral measurements currently used are Linear Predictive Coding (LPC)-derived cepstral coefficients and their regression coefficients. A spectral envelope reconstructed from a truncated set of cepstral coefficients is much smoother than one reconstructed from LPC coefficients.

Speech recognition technology is used more and more for telephone applications like travel booking and information, financial account information, customer service call routing, and directory assistance. Using constrained grammar recognition, such applications can achieve remarkably high accuracy. Research and development in speech recognition technology has continued to grow as the cost for implementing such voice-activated systems has dropped and the usefulness and efficacy of these systems has improved. For example, recognition systems optimized for telephone applications can often supply information about the confidence of a particular recognition, and if the confidence is low, it can trigger the application to prompt callers to confirm or repeat their request. Furthermore, speech recognition has enabled the automation of certain applications that are not automatable using push-button interactive voice response (IVR) systems, like directory assistance and systems that allow callers to "dial" by speaking names listed in an electronic phone book.

Speaker identity is correlated with the physiological and behavioral characteristics of the speaker. These characteristics exist both in the spectral envelope (vocal tract characteristics) and in the supra-segmental features (voice source characteristics and dynamic features spanning several segments). The most common short-term spectral measurements currently used are Linear Predictive Coding (LPC)-derived cepstral coefficients and their regression coefficients. A spectral envelope reconstructed from a truncated set of cepstral coefficients is much smoother than one reconstructed from LPC coefficients.